HL2030Axxxx MCU is based on 32-bit Arm® Cortex®-M0 core, supporting up to 256K bytes of flash memory and 32K bytes of SRAM, 12 timers, 1 ADC, 10 communication interfaces, 2 sets of comparators, and 3 sets of operational amplifiers.

Features:

- Core: 32-bit Arm® Cortex®-M0 Core
- Maximum operating frequency of 72MHz
- Memory
- Supports up to 256K bytes of flash memory
- Supports up to 32K bytes of SRAM
- Clock, Reset, and Power Management
- 1.8~3.6V supply and I/O pins

- Power-on/Power-down reset (POR/PDR), Programmable Voltage Detector (PVD)

- 4~32MHz crystal oscillator

- Embedded 8MHz RC oscillator factory calibrated (supports LSE real-time calibration)

- Embedded 14MHz RC oscillator factory calibrated (dedicated to ADC)

- Embedded calibrated 40kHz RC oscillator
- Calibrated 32kHz RTC oscillator
- Low Power Consumption
- Sleep, stop, and standby modes

- VBAT supplies power to RTC and backup registers

- DMA: 5-channel DMA controller
- Debug Mode

- Serial Wire Debug (SWD)

■ I/O Ports

- Supports up to 39 multifunctional bidirectional I/O ports, all I/O ports can be mapped to external interrupts

■ Enhanced CRC Calculation Unit

■ Supports hardware division, square root module

■ 12 Timers

- 1 16-bit advanced control timer for sixchannel PWM output

- 1 32-bit and seven 16-bit timers, up to four IC/OC, OCN, available for infrared control decoding

- 2 watchdog timers (independent and windowed)

- System time timer

■ 10 Communication Interfaces

- 2 I2C interfaces (support SMBus/PMBus)

- 6 USART interfaces (support ISO7816, LIN, IrDA interfaces, and modem control)

- 2 SPI interfaces, two multiplexed with I2S interfaces

Analog Interfaces

- 1 12-bit ADC, 1us conversion time (up to 10 input channels)

- Supports up to 3 high-speed operational amplifiers

- Supports up to 2 comparators

# Contents

| 1 Introduction                                                                 |
|--------------------------------------------------------------------------------|
| 2 Specification Description                                                    |
| Device Overview                                                                |
| Overview7                                                                      |
| 2.1.1 ARM® Cortex® -M0 Microprocessor Platform Integrated with FLASH and SRAM7 |
| 2.1.2 Memory                                                                   |
| 2.1.3 Boot Modes                                                               |
| 2.1.4 CRC (Cyclic Redundancy Check) Calculation Unit 8                         |
| 2.1.5 Power Management                                                         |
| 2.1.6 Clocks and Startup10                                                     |
| 2.1.7 GPIO                                                                     |
| 2.1.8 DMA                                                                      |
| 2.1.9 Interrupts and Events 13                                                 |
| 2.1.10 ADC (Analog/Digital Converter)                                          |
| 2.1.11 COMP (Comparator)                                                       |
| 2.1.12 OPA (Operational Amplifier)                                             |
| 2.1.13 DIVSQRT (Division, Square Root Module) 14                               |
| 2.1.14 Temperature Sensor                                                      |
| 2.1.15 Timers                                                                  |
| 2.1.16 Watchdogs 16                                                            |
| 2.1.17 Systick Timer                                                           |
| 2.1.18 Real-Time Clock (RTC) 16                                                |
| 2.1.19 I2C                                                                     |
| 2.1.20 USART                                                                   |
| 2.1.21 SPI                                                                     |
| 2.1.22 Serial Wire Debug Port (SW-DP) 18                                       |
| 3 Pin Definitions                                                              |

|    | TSSOP20 package                                                | 19   |
|----|----------------------------------------------------------------|------|
|    | LQFP32 package                                                 | 19   |
|    | QFN32 package                                                  | 20   |
|    | LQFP48 package                                                 | 21   |
|    | Pin definitions                                                | 21   |
| 4. | Electrical Characteristics                                     | 24   |
|    | Test Conditions                                                | 24   |
|    | 4.1.1 Maximum and Minimum Values                               | 24   |
|    | 4.1.2 Typical Values                                           | 24   |
|    | 4.1.3 Typical Curves                                           | 24   |
|    | 4.1.4 Load Capacitance                                         | 24   |
|    | 4.1.5 Pin Input Voltage                                        | 24   |
|    | 4.1.6 Power Supply Scheme                                      | 25   |
|    | 4.1.7 Current Consumption Measurement                          | 26   |
|    | Absolute Maximum Ratings                                       | 26   |
|    | 4.1.8 Electrical Performance Parameters                        | . 26 |
|    | 4.1.9 Power-up and Power-down Operating Conditions             | 27   |
|    | 4.1.10 Embedded Reset and Power Control Module Characteristics | 27   |
|    | 4.1.11 Internal Reference Voltage                              | 28   |
|    | 4.1.12 Power Supply Current Characteristics                    | . 29 |
|    | 4.1.13 External Clock Source Characteristics                   | 31   |
|    | 4.1.14 Internal Clock Source Characteristics                   | 33   |
|    | 4.1.15 Wake-up Time from Low-Power Modes                       | 34   |
|    | 4.1.16 PLL Characteristics                                     | . 35 |
|    | 4.1.17 Memory Characteristics                                  | 35   |
|    | 4.1.18 Absolute Maximum Ratings (Electrical Sensitivity)       | 36   |
|    | 4.1.19 I/O Port Characteristics                                | 36   |
|    | 4.1.20 NRST Pin Characteristics                                | 37   |
|    | 4.1.21 12-bit ADC Characteristics                              | . 38 |
|    | 4.1.22 Temperature Sensor Characteristics                      | . 40 |
|    | 4.1.23 COMP Electrical Characteristics                         | . 41 |
| _  |                                                                |      |

|   | 4.1.24 OPA Electrical Characteristics | .43  |
|---|---------------------------------------|------|
| 5 | Package Features                      | 45   |
|   | TSSOP20 package                       | 45   |
|   | LQFP32 Package                        | 47   |
|   | QFN32 Package                         | . 48 |
|   | LQFP48 Package                        | 50   |
| 6 | Ordering Code                         | 51   |
| 7 | Version History                       | 52   |

# Index of Table

| Table 1: Device Feature Configuration                                           | 7    |
|---------------------------------------------------------------------------------|------|
| Table 2: Comparison of Timer Features                                           | . 14 |
| Table 3: I2C digital filtering and analog filtering                             | 17   |
| Table 4: I2C Features                                                           | 18   |
| Table 5: GPIOA_AFR configuration table                                          | . 21 |
| Table 6: GPIOB_AFR configuration table                                          | . 22 |
| Table 7: GPI0F_AFR                                                              | 23   |
| Table 8: General Operating Conditions                                           | . 26 |
| Table 9: Current Characteristics                                                | . 27 |
| Table 10: Temperature Characteristics                                           | . 27 |
| Table 11: Power-up and Power-down Operating Conditions                          | . 27 |
| Table 12: Embedded Reset and Power Control Module Characteristics               | . 27 |
| Table 13: Internal Reference Voltage                                            | . 29 |
| Table 14: Current Consumption in Operating Mode                                 | 29   |
| Table 15 :Current consumption in sleep mode, code running in Flash              | . 30 |
| Table 16: Typical and maximum current consumption in shutdown and standby modes | . 30 |
| Table 17: HSE 4~32MHz Oscillator Features                                       | . 31 |
| Table 18: LSE Oscillator Features (fLSE=32.768kHz)                              | 32   |
| Table 19: HSI Oscillator Features                                               | 33   |
| Table 20: HSI14 Oscillator Features                                             | . 34 |
| Table 21: LSI Oscillator Features                                               | . 34 |
| Table 22: Wake-up Times from Low-Power Modes                                    | 34   |
| Table 23: PLL Characteristics                                                   | 35   |
| Table 24: Flash Memory Characteristics                                          | . 35 |
| Table 25: Flash Memory Lifetime and Data Retention Period                       | . 35 |
| Table 26: ESD Absolute Maximum Ratings                                          | . 36 |
| Table 27: I/O Static Characteristics                                            | 36   |
| Table 28: Output Voltage Characteristics                                        | . 37 |
| Table 29: NRST Pin Characteristics                                              | . 37 |
| Table 30: ADC Characteristics                                                   | . 38 |
| Table 31: Maximum RAIN when fADC = 14MHz                                        | . 40 |
| Table 32: Temperature Sensor Characteristics                                    | 40   |
| Table 33: COMP Characteristics                                                  | .41  |
| Table 34:OPA Characteristics                                                    | 43   |

# Index of Figure

| Figure 1: Clock Tree of HL2030Ax8/xB                     | . 11 |
|----------------------------------------------------------|------|
| Figure 2: Clock Tree of HL2030AxC                        | 12   |
| Figure 3: TSSOP20 package                                | . 19 |
| Figure 4: LQFP32 package                                 | 19   |
| Figure 5: QFN32 package                                  | . 20 |
| Figure 6: LQFP48 package                                 | 21   |
| Figure 7: Pin Load Conditions                            | . 24 |
| Figure 8: Pin Input Voltage Measurement                  | . 25 |
| Figure 9: Power Supply Scheme                            | 25   |
| Figure 10: Current Consumption Measurement Scheme        | . 26 |
| Figure 11: Typical application using an 8MHz crystal     | . 32 |
| Figure 12: Typical application using a 32.768KHz crystal | . 33 |
| Figure 13: Recommended Protection for NRST Pin           | . 38 |
| Figure 14: Ideal VSENSE vs. Temperature Curve            | .41  |

# 1 Introduction

The contents of this datasheet include: basic configurations of the product (such as the capacity of built-in Flash and RAM, the types and quantities of peripheral modules, etc.), the number and allocation of pins, electrical characteristics, packaging information, and ordering information, etc.

# 2 Specification Description

#### **Device Overview**

| Family                  |                                 | HL2030A     |              |              |              |              |  |  |  |
|-------------------------|---------------------------------|-------------|--------------|--------------|--------------|--------------|--|--|--|
| Model                   |                                 | F8P7        | K8T7         | KCV7         | CBT7         | CCT7         |  |  |  |
| Flash(K bytes)          |                                 | 64          | 64           | 256          | 128          | 256          |  |  |  |
| SRAM(K bytes)           |                                 | 16          | 16           | 32           | 32           | 32           |  |  |  |
|                         | Advanced<br>(16bit)             | 1           | 1            | 1            | 1            | 1            |  |  |  |
| Timor                   | Universal<br>(16bit)            | 5           | 5            | 5            | 5            | 5            |  |  |  |
| Timer                   | Universal<br>(32bit)            | 1           | 1            | 1            | 1            | 1            |  |  |  |
|                         | Basic<br>(16bit)                | 2           | 2            | 2            | 2            | 2            |  |  |  |
| Commu                   | SPI                             | 1           | 2            | 2            | 2            | 2            |  |  |  |
| nication                | I2C                             | 1           | 2            | 2            | 2            | 2            |  |  |  |
| s                       | USART                           | 5           | 6            | 6            | 6            | 6            |  |  |  |
| GPI                     | O Ports                         | 15          | 25           | 27           | 39           | 39           |  |  |  |
| 12-bit A<br>(nur<br>cha | DC Module<br>mber of<br>unnels) | 1(9Channel) | 1(10Channel) | 1(10Channel) | 1(10Channel) | 1(10Channel) |  |  |  |
|                         | OPA                             | 1           | 2            | 2            | 3            | 3            |  |  |  |
| C                       | OMP                             | 2           |              |              |              |              |  |  |  |
| DIVSQRT                 |                                 | Support     |              |              |              |              |  |  |  |
| CPU Frequency           |                                 | 72M         |              |              |              |              |  |  |  |
| Operating Voltage       |                                 |             |              | 1.8~3.6V     |              |              |  |  |  |
| Op<br>Tem               | erating<br>perature             |             |              | -40~+105°C   |              |              |  |  |  |
| Packag                  | ging Form                       | TSSOP20     | LQFP32       | QFN32(4x4)   | LQ           | FP48         |  |  |  |

Table 1 Device Features

#### Overview

# 2.1.1 ARM® Cortex® -M0 Microprocessor Platform Integrated with FLASH and SRAM

The ARM® Cortex®-M0 core is the latest generation of 32-bit core platforms developed by ARM® for small embedded systems, designed to implement convenient, low-cost solutions. This

platform provides users with excellent computational performance and rapid interrupt response while requiring only a limited number of pins and power consumption.

The ARM® Cortex®-M0 32-bit RISC processor offers excellent code efficiency, providing users with the high performance expected from the ARM core under conditions of small storage space.

All products are comprising with embedded ARM cores and keeping full compatibility with all ARM tools and software.

#### 2.1.2 Memory

The device has the following features:

- SRAM is accessed at CPU clock speed (read/write) with no wait states and features embedded parity, generating exceptions for severe fault applications.
- Non-volatile memory is divided into two arrays:
  - 16-256KB of embedded flash, used for programs and data
  - Option bytes

Option bytes are used for write-protecting memory (4 KB blocks) and/or readout protecting the entire memory, using the following options:

- Level 0: No readout protection

- Level 1: Memory readout protection; cannot read from or write to flash if debugging features are connected or if choosing to start in RAM

- Level 2: Chip readout protection; debugging features (Cortex®- M0 serial wire) and the option to start in RAM are disabled

#### 2.1.3 Boot Modes

At startup, the boot pins and boot selector option bits are used to select one of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The bootloader is located in system memory. Flash can be reprogrammed using USART on pins PA14/PA15 or PA9/PA10 or using IIC on pins PB6/PB7.

#### 2.1.4 CRC (Cyclic Redundancy Check) Calculation Unit

The CRC (Cyclic Redundancy Check) calculation unit is used with configurable generator polynomial values and sizes.

In other applications, CRC-based techniques are used to verify the integrity of data transmission or storage.

#### 2.1.5 Power Management

Power Supply Scheme

- VDD = 1.8 3.6 V: External power for I/O and internal regulators. Externally provided through the VDD pin.
- VDDA= VDD 3.6 V: External analog power for ADC, reset module, RC, and PLL.

The volta ge level of VDDA must be equal to or higher than VDD, and must be provided first.

#### Power Detector

This product integrates a Power-on Reset (POR)/Power-down Reset (PDR) circuit, which is always operational, ensuring the system works when power exceeds POR; when VDD is below the set threshold (POR/PDR), the device is in reset state, eliminating the need for an external reset circuit.

There is also a Programmable Voltage Detector (PVD) in the device, which monitors VDD/VDDA supply and compares it with the threshold VPVD, generating an interrupt when VDD is below or above the threshold VPVD. The interrupt service routine can issue warning messages or put the microcontroller into a safe mode. The PVD feature needs to be enabled by programming.

#### Voltage Regulator

The regulator has two operating modes and is always enabled after reset.

- Main Power (MR) is used in normal operating mode (Run).
- Low Power (LPR) can be used in stop mode, reducing power requirements.

In standby mode, it enters power-down mode. In this mode, the output of the regulator is in a high-impedance state, the core circuit is powered off, resulting in zero consumption (but the data of the registers and SRAM are lost).

• Low Power Modes

Supports three low power modes to achieve the best trade-off between low power consumption, short startup time, and available wake-up sources:

• Sleep Mode

In sleep mode, only the CPU is in a dormant state. When an interrupt/event occurs, all peripherals continue to operate and can wake up the CPU.

• Stop Mode

Stop mode achieves very low power consumption while retaining the data of SRAM and registers. All clocks in the 1.1V domain are stopped, and the PLL, HSI RC, and HSE crystal oscillators are disabled. The voltage regulator can also be set to normal or low power mode. The device can be awakened from stop mode by any EXTI line. EXTI line sources can be one of the 16 external lines or the RTC.

• Standby Mode

Standby mode is designed to achieve the lowest power consumption by turning off the internal regulator, powering down the entire 1.1V domain. The PLL, HSI RC, and HSE crystal

oscillators are also turned off. Upon entering standby mode, the data of SRAM and registers, except for those in the RTC domain and backup circuits, will be lost. The device exits standby mode when an external reset (NRST pin), IWDG reset, rising edge on the WKUP pin, or an RTC event occurs.

Note: The RTC, IWDG, and their corresponding clock sources do not stop due to entering stop or standby mode.

#### 2.1.6 Clocks and Startup

System clock selection is performed at startup, but the internal RC 8MHz oscillator is selected as the default CPU clock at reset. An external 4-32MHz clock can be selected, in which case it is monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator. If enabled, a software interrupt is generated. Likewise, full interrupt management of the PLL clock item can be performed when necessary (e.g., when a failure occurs in the indirectly used external crystal, resonator, or oscillator).



Figure 1 Clock Tree of HL2030Ax8/xB



Figure 2 Clock Tree of HL2030AxC

#### 2.1.7 GPIO

Each GPIO pin can be configured through software as output (push-pull or open-drain), input (with or without pull-up or pull-down), or peripheral alternate function. Most GPIO pins share with digital or analog alternate functions.

If needed, the I/O configuration can be locked in a specific order to avoid spurious writing to the I/O registers.

#### 2.1.8 DMA

Supports up to 5 general-purpose DMAs that can manage data transfers from memory to memory, device to memory, and memory to device; the DMA controller supports the management of

circular buffers, avoiding interrupts generated by the controller when transfers reach the end of the buffer.

Each channel has dedicated hardware DMA request logic and can also be triggered by software for each channel; the length of the transfer, the source address, and the destination address of the transfer can all be set separately through software. DMA can be used for major peripherals: SPI, I2C, USART, advanced/general/basic timers (except TIM14), ADC, etc.

#### **2.1.9 Interrupts and Events**

Nested Interrupt Controller (NVIC)

Integrated nested vector interrupt controller, capable of handling up to 32 maskable interrupt channels (excluding 16 Core interrupt lines) and 4 priority levels.

- Tightly coupled NVIC achieves low-latency interrupt response processing
- Interrupt vector entry addresses directly enter the core
- Tightly coupled NVIC interface
- Allows early processing of interrupts
- Handles late-arriving higher priority interrupts
- Supports interrupt tail-chaining feature
- Automatically saves processor state
- Automatically restores on interrupt return, with no additional instruction overhead

External Interrupt/Event Controller (EXTI)

The external interrupt/event controller includes 32 edge detectors for generating interrupt/event requests. Each interrupt line can independently configure its trigger event (rising edge or falling edge or both edges) and can be masked independently; a pending register maintains the status of all interrupt requests. EXTI can detect pulses narrower than the internal APB2 clock cycle.

#### 2.1.10 ADC (Analog/Digital Converter)

The 12-bit ADC has up to 10 external and two internal (temperature sensor, voltage reference measurement) channels and performs conversions in single trigger or scan mode. In scan mode, automatic conversions are performed on a set of selected analog inputs.

The ADC can be serviced by the DMA controller.

Supports analog watchdog feature. An interrupt is generated when the conversion voltage exceeds the programmed threshold.

#### **2.1.11 COMP (Comparator)**

Supports up to two fast rail-to-rail low-power comparators with programmable features of reference voltage (internal or external), hysteresis, and speed (low speed when in low power) and with selectable output polarity.

The reference voltage can be one of the following voltages:

- External IO
- Internal reference voltage or  $(1 \sim 13)/16$  voltage divider

All comparators can wake up from Stop Mode, generate brake events, or send interrupts to the TIM module.

#### 2.1.12 OPA (Operational Amplifier)

Supports up to three basic op-amp modules, which can implement basic signal amplification and signal operation functions with a few external components.

Features include:

- Gain-bandwidths supports 17MHz
- Supports rail-to-rail input/output
- The op-amp output can be connected to the internal comparator
- The op-amp output can be connected to the ADC channel
- Can be used as a comparator with external circuits

#### 2.1.13 DIVSQRT (Division, Square Root Module)

Supports one 32bit/16bit hardware division module, which has the following features:

- Supports division of unsigned or signed numbers.
- Has overflow flag indicator.
- The dividend and quotient have a bit width of 32 bits, and the divisor and remainder have a bit width of 16 bits.
- Writing to the divisor register or the dividend register will both start the division operation.
- Completes operation in 8 HCLK clocks.
- Supports one 32bit hardware square root module, which has the following features:
- Writing to the radicand starts the square root operation.
- Completes operation in 8 HCLK clocks.

#### 2.1.14 Temperature Sensor

The temperature sensor generates a voltage that changes linearly with temperature. The temperature sensor is internally connected to the ADC1\_IN16 input channel to convert the sensor's output to digital values.

#### 2.1.15 Timers

Includes up to 1 advanced control timer, 6 general timers, and 2 basic timers.

The table below compares the features of advanced control timers, general timers, and basic timers:

| Туре            | Timer | Counter<br>Bit Width | Counting<br>Method    | Prescaler                                | DMA<br>Request | Capture/Com<br>pare Channel | Complemen<br>tary Output |
|-----------------|-------|----------------------|-----------------------|------------------------------------------|----------------|-----------------------------|--------------------------|
| Advanced Timer  | TIM1  | 16 bit               | up / down /<br>updown |                                          | YES            | 4                           | 3                        |
|                 | TIM2  | 32 bit               | up / down /<br>updown |                                          | YES            | 4                           | -                        |
|                 | TIM3  | 16 bit               | up / down /<br>updown |                                          | YES            | 4                           | -                        |
| Universal Timer | TIM14 | 16bit                | up                    | Any<br>integer<br>between 1<br>and 65536 | NO             | 1                           | -                        |
|                 | TIM15 | 16 bit               | up                    |                                          | YES            | 1                           | 1                        |
|                 | TIM16 | 16 bit               | up                    |                                          | YES            | 1                           | 1                        |
|                 | TIM17 | 16 bit               | up                    |                                          | YES            | 1                           | 1                        |
|                 | TIM6  | 16 bit               | up                    |                                          | YES            | 0                           | -                        |
| Basic Timer     | TIM7  | 16 bit               | up                    |                                          | YES            | 0                           | _                        |

#### Advanced Control Timer (TIM1)

The Advanced Control Timer (TIM1) can be seen as a three-phase PWM generator allocated to 6 channels. It has complementary PWM output with dead zone insertion and can also be used as a full general-purpose timer. Four independent channels can be used for:

- Input capture
- Output comparison
- PWM generation (edge or center-aligned mode)
- One-pulse output

When configured as a 16-bit standard timer, it has the same functionality as the general-purpose timer. When set as a 16-bit PWM generator, it has full modulation capability (0~100%). In debug mode, the counter can be frozen, and the PWM output is disabled.

Many functions are the same as the standard TIM timer, and the internal structure is also similar. Therefore, the Advanced Control Timer can work in conjunction with the TIM timer through the timer link function, providing synchronization or event chaining functions.

#### General-purpose Timer (TIM2, TIM3, TIM14, TIM15, TIM16, TIM17)

There are 6 synchronizable standard timers (TIM2, TIM3, TIM14, TIM15, TIM16, TIM17) in this product series. Each timer has a 16-bit (TIM2 is 32-bit) auto-reload increment/decrement counter, a 16-bit prescaler, and 4 (or 2 or 1) independent channels. Each channel can be used for input capture, output comparison, PWM, and one-pulse mode output. They can also work with the

Advanced Control Timer through the timer link function to provide synchronization or event chaining functions. In debug mode, the counter can be frozen. Any general-purpose timer can be used to produce PWM output.

Each timer has an independent DMA request mechanism.

These timers can also handle the signals from incremental encoders and can process the digital output of 1 to 3 Hall sensors.

Basic Timer TIM6 and TIM7

Used as a general 16-bit time base.

#### 2.1.16 Watchdogs

Independent Watchdog

The independent watchdog is based on a 12-bit decrementing counter and an 8-bit prescaler, clocked by an independent 40kHz internal RC oscillator. As this RC oscillator is independent of the main clock, it can operate in stop and standby modes. It can be used as a watchdog to reset the entire system in case of problems or as a free-running timer to provide timeout management for applications. The option bytes can configure it to be software or hardware start watchdog. In debug mode, the counter can be frozen.

#### Window Watchdog

The window watchdog has a 7-bit decrementing counter and can be set to run freely. It can be used as a watchdog to reset the entire system in case of problems. It is driven by the main clock and has an early warning interrupt function. In debug mode, the counter can be frozen.

#### 2.1.17 Systick Timer

This timer is specifically for real-time operating systems but can also be used as a standard countdown timer. Its features are:

- A 24-bit downward counter
- · Auto-reload function
- Generates a maskable system interrupt when the counter reaches 0
- Programmable clock source (HCLK or HCLK/8)

#### 2.1.18 Real-Time Clock (RTC)

The RTC is an independent BCD timer/counter. Its main features are:

- Calendar with sub-second, seconds, minutes, hours (12 or 24 format), weekdays, dates, months, years, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap years), 30, and 31-day months.
- Programmable alarm wakeup capability from stop and standby modes.
- Periodic wakeup unit with programmable resolution and period.
- Real-time correction from 1 to 32767 RTC clock pulses. This can be used to synchronize the RTC with the main clock.
- Digital calibration circuit with 1ppm resolution to compensate for the inaccuracy of the quartz crystal.
- Two tamper detection pins with a programmable filter. The MCU can be awakened from stop and standby modes when a tampering event is detected.
- Timestamp function, which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin or by a tampering event. The MCU can be awakened from stop and standby modes by timestamp event detection.
- Reference clock detection: A more accurate second source clock (50 or 60 Hz) can be used to enhance the calendar.
- RTC clock sources include:
- 32.768 kHz external crystal
- Oscillator or resonator
- Internal low-power RC oscillator (typical frequency of 40 kHz)
- High-speed external clock divided by 32

#### 2.1.19 I2C

Up to two I2C interfaces (I2C1 and I2C2) can work in multi-master or slave modes. Both can support standard mode (up to 100Kbit/s) or fast mode (up to 400Kbit/s). I2C1 also supports Fast Mode Plus (up to 1Mbit/s) with a 20ma output driver. Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one configurable mask). They also include programmable analog and digital noise filters.

|                                     | Analog Filtering                              | Digital Filtering                                                        |
|-------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------|
| Suppression of Spike Pulse<br>Width | ≥50 ns                                        | Programmable width of 1-15<br>I2C clocks                                 |
| Advantages                          | Available in stop mode                        | 1. Enhanced filtering capability.Standard requirement.<br>Stable length. |
| Disadvantages                       | Varies with temperature, voltage, and process | -                                                                        |

| Table 3 | I2C | digital | filtering | and | analog | filtering |
|---------|-----|---------|-----------|-----|--------|-----------|
|---------|-----|---------|-----------|-----|--------|-----------|

In addition, I2C1 also provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP function, host notification protocol, hardware CRC (PEC) generation/verification, timeout validation, and ALERT protocol management.

The I2C interface can be serviced by the DMA controller.

For the differences between I2C1 and I2C2, please refer to the table below.

Table 4 I2C Features

| I2C Features                                                  | I2C1 | I2C2 |
|---------------------------------------------------------------|------|------|
| 7-bit Addressing Mode                                         | Х    | Х    |
| 10-bit Addressing Mode                                        | Х    | Х    |
| Standard Mode (up to 100 kbit/s)                              | Х    | Х    |
| Fast Mode (up to 400 kbit/s)                                  | Х    | Х    |
| Fast Mode Plus (up to 1 Mbit/s), 20mA output drive capability | Х    | Х    |
| Independent Clock                                             | Х    | _    |
| SMBUS                                                         | Х    | -    |
| Wakeup from stop mode                                         | Х    | _    |

#### 2.1.20 USART

Up to 6 universal synchronous/asynchronous receivers/transmitters. All USART interfaces can be serviced by the DMA controller.

#### 2.1.21 SPI

A maximum of two SPIs can communicate in both full-duplex and half-duplex communication modes, in slave and master modes. A 3-bit prescaler provides 8 master mode frequencies, with frame sizes configurable from 4 bits to 16 bits.

#### 2.1.22 Serial Wire Debug Port (SW-DP)

Provides a serial debug port, allowing serial debugging tools to connect with the MCU.

# 3 Pin Definitions

### **TSSOP20** package



Figure 3: TSSOP20 package

#### LQFP32 package



Figure 4: LQFP32 package

### QFN32 package



Figure 5: QFN32 package

### LQFP48 package



Figure 6: LQFP48 package

#### **Pin definitions**

Table 5: GPIOA\_AFR configuration table

| Pin<br>name | AF0       | AF1           | AF2              | AF3 | AF4            | AF5        | AF6       | AF7       | AF8 |  |
|-------------|-----------|---------------|------------------|-----|----------------|------------|-----------|-----------|-----|--|
|             |           | USART1_CTS(1) | TIM2 CH1         |     | USART4 T       |            |           |           |     |  |
| PA0         | -         | USART2_CTS(2) | ETR              | -   | X              | TIM2_CH4   | TIM3_CH4  | COMPI_OUT | -   |  |
| DA1         | EVENTOUT  | USART1_RTS(1) | TIM2 CH2         |     | USART4 R       | TIM15 CU1N |           | COMP2 OUT |     |  |
|             | EVENIOUT  | USART2_RTS(2) |                  | -   | X <sup>-</sup> | TIMI5_CHIN | -         | COMP2_001 | -   |  |
| PA2         | TIM15_CH1 | USART1_TX(1)  | TIM2_CH3         | -   | -              | -          | -         | COMP2_OUT |     |  |
|             |           | USART2_TX(2)  |                  |     |                |            |           |           | -   |  |
| РАЗ         | TIM15_CH2 | USART1_RX(1)  | TIM2_CH4         | -   |                |            |           | -         |     |  |
| 1715        |           | USART2_RX(2)  |                  |     |                | -          | -         |           | -   |  |
| DA4         | CDI1 NCC  | USART1_CK(1)  |                  |     |                | TIM14 CH1  | USADT6 TY |           |     |  |
| 1/14        | 5111_1155 | USART2_CK(2)  | -                | -   |                | USARIO_IX  | -         | -         | -   |  |
| PA5         | SPI1_SCK  | -             | TIM2_CH1_<br>ETR | -   | -              | USART6_RX  | -         | -         | -   |  |
| PA6         | SPI1_MISO | TIM3_CH1      | TIM1_BKIN        | -   | USART3_C<br>TS | TIM16_CH1  | EVENTOUT  | COMP1_OUT | -   |  |

| PA7  | SPI1_MOSI      | TIM3_CH2                     | TIM1_CH1N        | -            | TIM14_CH1      | TIM17_CH1 | EVENTOUT  | COMP2_OUT | -             |
|------|----------------|------------------------------|------------------|--------------|----------------|-----------|-----------|-----------|---------------|
| PA8  | МСО            | USART1_CK                    | TIM1_CH1         | EVENTOU<br>T | -              | -         | TIM1_BKIN | TIM3_CH1  | SPI2_M<br>OSI |
| PA9  | TIM15_BKI<br>N | USART1_TX                    | TIM1_CH2         | -            | I2C1_SCL       | МСО       | -         | TIM3_CH2  | SPI2_N<br>SS  |
| PA10 | TIM17_BKI<br>N | USART1_RX                    | TIM1_CH3         | -            | I2C1_SDA       | -         | -         | TIM3_CH3  | -             |
| PA11 | EVENTOUT       | USART1_CTS                   | TIM1_CH4         | -            | USART2_T<br>X  | I2C2_SCL  | TIM1_CH1N | COMP1_OUT | SPI2_S<br>CK  |
| PA12 | EVENTOUT       | USART1_RTS                   | TIM1_ETR         | -            | USART2_R<br>X  | I2C2_SDA  | TIM1_CH2N | COMP2_OUT | SPI2_M<br>ISO |
| PA13 | SWDIO          | IR_OUT                       | -                | -            | -              | -         | -         | SPI2_MOSI | USART<br>3_TX |
| DA14 | OWCLY          | USART1_TX(1)                 |                  |              |                |           |           | CDI2 NGG  | USART         |
| PA14 | SWCLK          | USART2_TX(2)                 | -                | -            | -              | -         | -         | 5P12_N55  | 3_RX          |
| PA15 | SPI1_NSS       | USART1_RX(1)<br>USART2_RX(2) | TIM2_CH1_<br>ETR | EVENTOU<br>T | USART4_RT<br>S | -         | -         | TIM1_CH3N | TIM1_B<br>KIN |

1, Only present in the x8 model.

2, Only present in the xB and xC models.

Table 6: GPIOB\_AFR configuration table

| Pin<br>name | AF0          | AF1                                | AF2            | AF3           | AF4            | AF5            | AF6              | AF7       | AF8       |
|-------------|--------------|------------------------------------|----------------|---------------|----------------|----------------|------------------|-----------|-----------|
| PB0         | EVENTOUT     | TIM3_C<br>H3                       | TIM1_CH2N      | -             | USART3_CK      | -              | -                | -         | -         |
| PB1         | TIM14_CH1    | TIM3_C<br>H4                       | TIM1_CH3N      | -             | USART3_RT<br>S | -              | -                | -         | -         |
| PB2         | -            | -                                  | -              | -             | USART4_CK      | -              | -                | -         | -         |
| PB3         | SPI1_SCK     | EVENT<br>OUT                       | TIM2_CH2       | -             | USART5_TX      | -              | TIM2_CH1_E<br>TR | TIM1_CH2N | TIM3_CH3  |
| PB4         | SPI1_MISO    | TIM3_C<br>H1                       | EVENTOUT       | -             | USART5_RX      | TIM17_BKI<br>N | TIM2_CH2         | TIM1_CH1N | I2C2_SCL  |
| PB5         | SPI1_MOSI    | TIM3_C<br>H2                       | TIM16_BKIN     | I2C1_SM<br>BA | USART5_CK      | -              | TIM2_CH3         | TIM1_CH3  | I2C2_SDA  |
| PB6         | USART1_TX    | I2C1_SC<br>L                       | TIM16_CH1<br>N | -             | -              | -              | -                | TIM1_CH2  | SPI2_SCK  |
| PB7         | USART1_RX    | I2C1_S<br>DA                       | TIM17_CH1<br>N | -             | USART4_CT<br>S | -              | -                | TIM1_CH1  | SPI2_MISO |
| PB8         | -            | I2C1_SC<br>L                       | TIM16_CH1      | -             | -              | -              | -                | COMP1_OUT | USART2_TX |
| PB9         | IR_OUT       | I2C1_S<br>DA                       | TIM17_CH1      | EVENTO<br>UT  | -              | SPI2_NSS       | -                | COMP2_OUT | USART2_RX |
| PB10        | -            | I2C1_S<br>CL(1)<br>I2C2_S<br>CL(2) | TIM2_CH3       | -             | USART3_TX      | SPI2_SCK       | -                | -         | -         |
| PB11        | EVENTOUT     | I2C1_S<br>DA(1)<br>I2C2_S<br>DA(2) | TIM2_CH4       | -             | USART3_RX      | -              | -                | -         | -         |
| 0012        | SPI1_NSS(1)  | EVENT                              | TRAL DEN       |               | UCADT2 CV      | TIM15 BKI      |                  |           |           |
| PB12        | SPI2_NSS(2)  | OUT                                |                | -             | USARI5_CK      | N              | -                | -         | -         |
| DD12        | SPI1_SCK(1)  |                                    | TIMI CHIN      |               | USART3 CT      |                |                  |           |           |
| PB13        | SPI2_SCK(2)  | -                                  |                | -             | s –            | 12C2_SCL       | -                | -         | -         |
| DD14        | SPI1_MISO(1) | TIM15                              | TRAL CHON      |               | USART3 RT      |                |                  |           |           |
|             | SPI2_MISO(2) | CH1                                | TIMT_CH2N      | -             | S              | 12C2_SDA       | -                | -         | -         |

| PB15 | SPI1_MOSI(1) | TIM15_<br>CH2 | TIM1_CH3N | TIM15_C<br>H1N | - | - | - | - | - |
|------|--------------|---------------|-----------|----------------|---|---|---|---|---|
|      | SPI2 MOSI(2) |               |           |                |   |   |   |   |   |

1, Only present in the x8 model.

2, Only present in the xB and xC models.

Table 7 GPI0F\_AFR

| Pin name | AF0                         | AF1      | AF7       | AF8       |
|----------|-----------------------------|----------|-----------|-----------|
| PF0      | -                           | I2C1_SDA | TIM1_BKIN | SPI2_MOSI |
| PF1      | -                           | I2C1_SCL | TIM14_CH1 | SPI2_NSS  |
| PF6      | I2C1_SCL(1),<br>I2C2_SCL(2) | -        |           | SPI2_MOSI |
| PF7      | I2C1_SDA(1),<br>I2C2_SDA(2) | -        |           | SPI2_NSS  |

1, Only present in the x8 model.

2, Only present in the xB and xC models.

#### ADC PIN

| Pin name | ADC Channel |
|----------|-------------|
| PA0      | ADC1_CH0    |
| PA1      | ADC1_CH1    |
| PA2      | ADC1_CH2    |
| PA3      | ADC1_CH3    |
| PA4      | ADC1_CH4    |
| PA5      | ADC1_CH5    |
| PA6      | ADC1_CH6    |
| PA7      | ADC1_CH7    |
| PB0      | ADC1_CH8    |
| PB1      | ADC1_CH9    |

## 4. Electrical Characteristics

#### **Test Conditions**

Unless otherwise specified, all voltages are referenced to VSS.

#### 4.1.1 Maximum and Minimum Values

Unless otherwise specified, the maximum and minimum values are guaranteed under the worst conditions of ambient temperature, supply voltage, and clock frequency, determined by testing 100% of the products under TA = 25°C and TA = TA max (as given by the selected temperature range). Notes under tables may indicate that some data is derived from calculations, design simulations, and/or process characteristics and is not tested on the production line. Minimum and maximum values are derived from sample tests and are taken as the average value plus or minus three times the standard deviation (average  $\pm 3\Sigma$ ).

#### 4.1.2 Typical Values

Unless otherwise specified, typical values are based on a testing environment of  $TA = 25^{\circ}C$  and VDD = 3.3V. This data is for design guidance only and has not been experimentally validated.

#### 4.1.3 Typical Curves

Unless otherwise specified, all typical curves are for design guidance only and have not been experimentally validated.

#### 4.1.4 Load Capacitance

The load conditions for measuring pin parameters are shown below:



Figure 7: Pin Load Conditions

#### 4.1.5 Pin Input Voltage

The method for measuring pin input voltage is shown below:



Figure 8: Pin Input Voltage Measurement



Figure 9: Power Supply Scheme

25 / 52

#### 4.1.7 Current Consumption Measurement



Figure 10: Current Consumption Measurement Scheme

### **Absolute Maximum Ratings**

#### 4.1.8 Electrical Performance Parameters

The limit values listed below can cause permanent damage to the chip. The chip may not operate properly under these extreme conditions. Operating at the maximum rated conditions for extended periods may affect the reliability of the chip.

| Symbol    | Description                                                       | Min     | Max | Unit |  |
|-----------|-------------------------------------------------------------------|---------|-----|------|--|
| VDD - VSS | External main<br>supply voltage<br>(including VDDA<br>and VDD)(1) | -0.3    | 4   | V    |  |
| VIN       | Input voltage on 5V tolerant pins                                 | Vss-0.3 | 6   |      |  |
| VIIN      | Input voltage on other pins(2)                                    | Vss-0.3 | 4.0 |      |  |
| ΔVDDx     | Voltage difference<br>between different<br>supply pins            |         | 50  | – mV |  |
| VSSx-VSS  | Voltage difference<br>between different<br>ground pins            |         | 50  |      |  |

Table 8: General Operating Conditions

1: All power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to an external supply system

#### within the allowable range.

#### Table 9: Current Characteristics

| Symbol | Description                                                                         | Max(1) | Unit |
|--------|-------------------------------------------------------------------------------------|--------|------|
| IVDD   | Total current passing<br>through the<br>VDD/VDDA power<br>line (supply current) (1) | 150    |      |
| IVSS   | Total current through<br>the VSS ground wire<br>(outgoing current) (1)              | 150    | mA   |
|        | Sink current on any I/O<br>and control pins                                         | 25     |      |
| no     | Source current on any I/O and control pins                                          | -25    |      |

1: All power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to an external supply system within the allowable range.

Table 10: Temperature Characteristics

| Symbol | Description                  | Value      | Unit |
|--------|------------------------------|------------|------|
| TSTG   | Storage temperature range    | -40 ~ +105 | °C   |
| TJ     | Maximum junction temperature | 125        | °C   |

#### 4.1.9 Power-up and Power-down Operating Conditions

The parameters given in the table below are based on the general operating conditions and tested at the listed ambient temperatures.

Table 11: Power-up and Power-down Operating Conditions

| Symbol | Parameter         | Condition | Min | Max | Unit  |
|--------|-------------------|-----------|-----|-----|-------|
| tVDD   | VDD Rising Speed  |           | 0   | 00  | / • • |
|        | VDD Falling Speed |           | 20  | œ   | us/V  |

#### 4.1.10 Embedded Reset and Power Control Module Characteristics

The parameters given in the table below are based on the general operating conditions and tested under the VDD supply voltage.

 Table 12: Embedded Reset and Power Control Module Characteristics

| Symbol           | Parameter                                                            | Condition                      | Min | Typica<br>1 | Max | Unit |
|------------------|----------------------------------------------------------------------|--------------------------------|-----|-------------|-----|------|
|                  |                                                                      | PLS[2:0]=000 (rising<br>edge)  | _   | 2.21        | _   | V    |
|                  |                                                                      | PLS[2:0]=000 (falling<br>edge) | _   | 2.14        |     | V    |
|                  |                                                                      | PLS[2:0]=001 (rising<br>edge)  | _   | 2.31        |     | V    |
|                  |                                                                      | PLS[2:0]=001 (falling<br>edge) | _   | 2.24        |     | V    |
|                  |                                                                      | PLS[2:0]=010 (rising<br>edge)  | _   | 2.41        |     | V    |
|                  |                                                                      | PLS[2:0]=010 (falling<br>edge) |     | 2.34        |     | V    |
|                  |                                                                      | PLS[2:0]=011 (rising<br>edge)  |     | 2.51        |     | V    |
| VPVD             | Electrical Level<br>Selection of<br>Programmable<br>Voltage Detector | PLS[2:0]=011 (falling<br>edge) | _   | 2.44        |     | V    |
|                  |                                                                      | PLS[2:0]=100 (rising<br>edge)  |     | 2.61        |     | V    |
|                  |                                                                      | PLS[2:0]=100 (falling<br>edge) |     | 2.54        |     | V    |
|                  |                                                                      | PLS[2:0]=101 (rising<br>edge)  | _   | 2.71        |     | V    |
|                  |                                                                      | PLS[2:0]=101 (falling<br>edge) |     | 2.64        |     | V    |
|                  |                                                                      | PLS[2:0]=110 (rising<br>edge)  |     | 2.81        |     | V    |
|                  |                                                                      | PLS[2:0]=110 (falling<br>edge) | _   | 2.74        |     | V    |
|                  |                                                                      | PLS[2:0]=111 (rising<br>edge)  |     | 2.91        |     | V    |
|                  |                                                                      | PLS[2:0]=111 (falling<br>edge) |     | 2.84        |     | V    |
| VPVDhyst(1)      | PVD Delay                                                            | _                              |     | 70          |     | mV   |
| VPOR/PDR         | Power on/off                                                         | falling edge                   |     | 1.72        |     | V    |
|                  | Reset Threshold                                                      | rising edge                    |     | 1.76        |     | V    |
| VPDRhyst(1)      | PDR Delay                                                            |                                |     | 40          |     | mV   |
| TRSTTEMPO<br>(1) | Reset Duration                                                       | _                              | -   | 2           | _   | ms   |

Guaranteed by design, not tested in production.

# 4.1.11 Internal Reference Voltage

Parameters given in the table below are tested under the general operating condition listed VDD power supply voltage.

| Symbol        | Parameter                                                                       | Condition             | Min | Typical | Max  | Unit |
|---------------|---------------------------------------------------------------------------------|-----------------------|-----|---------|------|------|
| VREFINT       | Internal<br>Reference<br>Voltage                                                | -40°C < TA<br><+105°C | 1.2 | 1.23    | 1.25 | V    |
| TS_vrefint(1) | ADC<br>sampling<br>time when<br>reading the<br>internal<br>reference<br>voltage | _                     | -   | 5.1     | 17.5 | μs   |

Table 13: Internal Reference Voltage

1, The shortest sampling time is obtained through multiple loops in the application.

2, Guaranteed by design, not tested in production.

#### 4.1.12 Power Supply Current Characteristics

The current consumption is a composite indicator of various parameters and factors, including operating voltage, ambient temperature, I/O pin load, software configuration of the product, operating frequency, flip rate of the I/O pin, position of the program in memory, and executed code, etc.

For a detailed explanation of the measurement method of current consumption, refer to the current consumption test amount in the test conditions section.

Conditions for measuring current consumption of the microcontroller:

- . All I/O pins are in analog input mode.
- . All peripherals are turned off unless otherwise specified.
- . When turning on peripherals: fPCLK1 = fHCLK/2, fPCLK2 = fHCLK.

Table 14: Current Consumption in Operating Mode

|       |       |               |        | Typical V                 | Typical Value(1)         |                           | Maximum Value(2)         |          |  |
|-------|-------|---------------|--------|---------------------------|--------------------------|---------------------------|--------------------------|----------|--|
|       |       |               | fHCLK  | Enable All<br>Peripherals | Close All<br>Peripherals | Enable All<br>Peripherals | Close All<br>Peripherals | Uni<br>t |  |
|       |       |               | 72 MHz | 10.6                      | 6.6                      | 11.6                      | 7.4                      |          |  |
| Symbo |       | Condition     | 48MHz  | 8.0                       | 5.3                      | 9.0                       | 6.1                      |          |  |
|       | Param | 1             | 32MHz  | 6.3                       | 4.4                      | 7.1                       | 5.2                      |          |  |
| 1     | eter  |               | 24MHz  | 5.4                       | 4.0                      | 6.2                       | 4.7                      |          |  |
|       |       |               | 16MHz  | 4.5                       | 3.5                      | 5.3                       | 4.2                      | mA       |  |
|       |       |               | 8MHz   | 3.4                       | 2.9                      | 4.5                       | 4.0                      |          |  |
|       |       | High<br>Speed | 64MHz  | 9.7                       | 6.1                      | 11.1                      | 7.1                      |          |  |
|       |       |               | 48MHz  | 8.0                       | 5.3                      | 9.2                       | 6.2                      |          |  |
|       |       |               | 32MHz  | 6.3                       | 4.4                      | 7.3                       | 5.3                      |          |  |

|  | Internal            | 24MHz | 5.4 | 4.0 | 6.3 | 4.6 |  |
|--|---------------------|-------|-----|-----|-----|-----|--|
|  | RC                  | 16MHz | 4.5 | 3.5 | 5.3 | 4.3 |  |
|  | Oscillator<br>(HSI) | 8MHz  | 3.4 | 2.9 | 4.6 | 4.0 |  |

1,Typical values are tested at TA=25°C, VDD=3.3V.

2,Maximum values are tested at TA=105°C, VDD=3.6V.

3,External clock is 8MHz; PLL is enabled when fHCLK>8MHz.

|  | Table | 15 | :Current | consumption | in sle | ep mode, | code | running | in | Flash. |
|--|-------|----|----------|-------------|--------|----------|------|---------|----|--------|
|--|-------|----|----------|-------------|--------|----------|------|---------|----|--------|

|        | -             | Condition  |       | Typical Value(1)          |                          | Maximum                   | Value(2)                 |      |
|--------|---------------|------------|-------|---------------------------|--------------------------|---------------------------|--------------------------|------|
| Symbol | Para<br>meter |            | fHCLK | Enable All<br>Peripherals | Close All<br>Peripherals | Enable All<br>Peripherals | Close All<br>Peripherals | Unit |
|        |               |            | 72MHz | 8.9                       | 4.3                      | 9.8                       | 5.1                      |      |
|        | Supp          |            | 48MHz | 6.8                       | 3.8                      | 7.7                       | 4.5                      |      |
|        | lv            | External   | 32MHz | 5.4                       | 3.4                      | 6.3                       | 4.1                      |      |
|        | Curre         | Clock(3)   | 24MHz | 4.8                       | 3.2                      | 5.6                       | 3.9                      |      |
|        | nt            |            | 16MHz | 4.1                       | 3.0                      | 4.8                       | 3.7                      |      |
| IDD    | Unde          |            | 8MHz  | 3.2                       | 2.7                      | 4.3                       | 3.3                      |      |
|        | r             | High       | 64MHz | 8.2                       | 4.1                      | 9.4                       | 5.0                      | mA   |
|        | Sleen Speed   | 48MHz      | 6.8   | 3.8                       | 7.9                      | 4.5                       |                          |      |
|        | Mod           | Internal   | 32MHz | 5.4                       | 3.4                      | 6.4                       | 4.1                      |      |
|        | e             | e RC       | 24MHz | 4.8                       | 3.2                      | 5.7                       | 3.9                      |      |
|        |               | Oscillator | 16MHz | 4.1                       | 3.0                      | 4.9                       | 3.7                      |      |
|        |               | (HSI)      | 8MHz  | 3.8                       | 2.7                      | 4.3                       | 3.4                      |      |

1. Typical values are tested at TA=25°C and VDD=3.3V.

2. Maximum values are tested at TA= $105^{\circ}$ C and VDD=3.6V.

3. External clock is 8MHz; PLL is enabled when fHCLK>8MHz.

Table 16: Typical and maximum current consumption in shutdown and standby modes.

| Symbol                                                           | Parameter                                                                                                                                                                  | Condition                                                                                                                                                                  | Typical<br>Value(1) | Maximum<br>Value(2) | Unit |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|------|
| Supply<br>Current<br>Under Stop<br>IDD Mode<br>Supply<br>Current | The regulator is in operating mode.<br>Low-speed, high-speed internal RC<br>Oscillator, and external high-speed<br>Oscillator are turned off (no<br>independent watchdog). | 80                                                                                                                                                                         | _                   |                     |      |
|                                                                  | Under Stop<br>Mode                                                                                                                                                         | The regulator is in low-power<br>mode. Low-speed, high-speed<br>internal RC Oscillator, and external<br>high-speed Oscillator are turned off<br>(no independent watchdog). | 15                  |                     | uA   |
|                                                                  | Supply<br>Current                                                                                                                                                          | The low-speed internal RC<br>Oscillator, external low-speed<br>Oscillator, RTC, and IWDG are                                                                               | 1.3                 |                     |      |

|       | Under<br>Standby | turned off.                                                                                                                      |     |   |  |
|-------|------------------|----------------------------------------------------------------------------------------------------------------------------------|-----|---|--|
|       | Mode             | The low-speed internal RC<br>Oscillator is turned on; the external<br>low-speed Oscillator, RTC, and<br>IWDG are turned off.     | 1.8 | _ |  |
|       |                  | The external low-speed Oscillator is<br>turned on; the low-speed internal<br>RC Oscillator, RTC, and IWDG are<br>turned off.     | 2.1 |   |  |
|       |                  | The external low-speed Oscillator<br>and RTC are turned on; the low-<br>speed internal RC Oscillator and<br>IWDG are turned off. | 2.6 | _ |  |
|       |                  | The low-speed internal RC<br>Oscillator and IWDG are turned on;<br>the external low-speed Oscillator<br>and RTC are turned off.  | 1.8 | _ |  |
| IDD V | Supply           | The external low-speed Oscillator<br>and RTC are turned on.                                                                      | 1.5 |   |  |
| BAT   | Backup Area      | The external low-speed Oscillator<br>and RTC are turned off.                                                                     | 0.2 |   |  |

1. Typical values are tested at TA=25°C and VDD=3.3V.

2. Maximum values are tested at TA=105°C and VDD=3.6V.

3. The external clock is 8MHz, and PLL is enabled when fHCLK>8MHz.

#### 4.1.13 External Clock Source Characteristics

An external high-speed clock produced using a crystal/ceramic resonator.

The high-speed external clock (HSE) can be generated using an oscillator comprised of a 4~32MHz crystal/ceramic resonator. The information provided in this section is based on the results obtained from an overall feature evaluation using the typical external components listed in the table below. In applications, the resonator and the load capacitance must be as close as possible to the oscillator's pins to minimize output distortion and stabilization time during startup. For detailed parameters of the crystal resonator (frequency, packaging, precision, etc.), please consult the respective manufacturer. (Translator's note: The crystal resonator mentioned here is what we commonly refer to as a passive crystal.)

| Symbol   | Parameter               | Condition     |                | Minimum<br>Value | Typical<br>Value | Maximum<br>Value | Unit |
|----------|-------------------------|---------------|----------------|------------------|------------------|------------------|------|
| fOSC_IN  | Oscillator<br>Frequency | _             |                | 4                | 8                | 32               | MHz  |
| tSU(HSE) | Starting Time           |               | TA = -<br>40°C | _                | 2                |                  | ms   |
|          |                         | VDD is stable | TA =<br>25 °C  | _                | 1.9              |                  |      |
|          |                         |               | TA =           |                  | 2.1              |                  |      |

| S |
|---|
| 5 |

|  | 85 °C |  |  |
|--|-------|--|--|

1. The resonator's characteristic parameters are provided by the crystal/ceramic resonator manufacturer.

2. Derived from a comprehensive evaluation, not tested in production.

3. tSU(HSE) is the startup time, measured from the moment the software enables the HSE until a stable 8MHz oscillation is achieved. This value is measured on a standard crystal resonator and may vary significantly depending on the crystal manufacturer.

For CL1 and CL2, it is recommended to use high-quality ceramic capacitors designed for high-frequency applications (with typical values between) 5 pF and 25 pF. Choose a crystal or resonator that meets the requirements. Typically, CL1 and CL2 have the same parameters. Crystal manufacturers usually provide load capacitance parameters based on the serial combination of CL1 and CL2. When selecting CL1 and CL2, the capacitance of the PCB and MCU pins should be considered (you can roughly estimate the capacitance between the pins and the PCB board as 10 pF).



Figure 11: Typical application using an 8MHz crystal

An external low-speed clock produced using a crystal/ceramic resonator.

The low-speed external clock (LSE) can be generated using an oscillator comprised of a 32.768kHz crystal/ceramic resonator. The information provided in this section is based on results obtained from an overall feature evaluation. In applications, the resonator and load capacitance must be as close as possible to the oscillator's pins to minimize output distortion and stabilization time during startup. For detailed parameters about the crystal resonator (frequency, packaging, precision, etc.), please consult the respective manufacturer. (Translator's note: The crystal resonator mentioned here is what we commonly refer to as a passive crystal.)

| Symbol   | Parameter        | Condition |                | Minimum<br>Value | Typical<br>Value | Maximum<br>Value | Unit |
|----------|------------------|-----------|----------------|------------------|------------------|------------------|------|
| tSU(HSE) | Starting<br>Time |           | TA = -40°C     | _                | _                | 300              | ms   |
|          |                  | VDD is    | TA = 25 °C     |                  |                  | 400              |      |
|          |                  | stable    | TA =<br>105 °C |                  |                  | 500              |      |

Table 18: LSE Oscillator Features (fLSE=32.768kHz)

1.Derived from a comprehensive evaluation, not tested in production.

For CL1 and CL2, it is recommended to use high-quality ceramic capacitors ranging between 5 pF and 15 pF, and select a crystal or resonator that meets the requirements. Typically, CL1 and CL2 have the same parameters. Crystal manufacturers usually specify the load capacitance based on the serial combination of CL1 and CL2.

The load capacitance CL is calculated by the following formula:  $CL = CL1 \times CL2 / (CL1 + CL2) + Cstray$ , where Cstray represents the capacitance of the pin and PCB board or related PCB capacitance. Its typical value ranges between 2 pF and 7 pF.



Figure 12: Typical application using a 32.768KHz crystal

#### 4.1.14 Internal Clock Source Characteristics

The characteristic parameters given in the table below were measured under general working conditions, consistent with environmental temperature and power supply voltage.

High-Speed Internal (HSI) RC Oscillator

| Table | 19: | HSI | Oscillator | Features |
|-------|-----|-----|------------|----------|
|-------|-----|-----|------------|----------|

| Symbol   | Parameter                       | Condition                                      | Minimum<br>Value | Typical<br>Value | Maximum<br>Value | Unit |
|----------|---------------------------------|------------------------------------------------|------------------|------------------|------------------|------|
| fHSI     | Frequency                       |                                                |                  | 8                |                  | MHz  |
| A OCHOI  |                                 | TA = 25°C(LSE no<br>Calibration)               | -1               |                  | 1                | %    |
|          | HIS Oscillator<br>precision     | TA = -40~70°C(LSE<br>No Calibration)           |                  | +-1.5            |                  | %    |
| ACCIDI   |                                 | TA = 70~105°C(LSE<br>No Calibration)           |                  | +-3              |                  | %    |
|          |                                 | $TA = -40 \sim 105^{\circ}C(LSE)$ Calibration) | -1               | _                | 1                | %    |
| tSU(HSI) | HIS Oscillator<br>Starting Time |                                                |                  |                  | 2                | us   |

1, VDD = 3.3V, TA =  $-40 \sim 105^{\circ}C$ , unless otherwise specified.

High-Speed Internal 14MHz (HSI14) RC Oscillator (Dedicated for ADC)

#### Table 20: HSI14 Oscillator Features

| Symbol     | Parameter                                | Condition                   | Minimum<br>Value | Typical<br>Value | Maximum<br>Value | Unit |
|------------|------------------------------------------|-----------------------------|------------------|------------------|------------------|------|
| fHSI14     | Frequency                                | _                           |                  | 14               |                  | MHz  |
| ACCHSI14   | HSI14 Oscillator<br>Precision            | $TA = -40 \sim 105 \circ C$ |                  | +-3              |                  | %    |
| tSU(HSI14) | HSI14 Oscillator<br>Starting Time        |                             |                  | _                | 2                | us   |
| IDD(HSI14) | HSI14 Oscillator<br>Power<br>Consumption |                             |                  | 100              |                  | uA   |

#### Low-Speed Internal (LSI) RC Oscillator

Table 21: LSI Oscillator Features

| Symbol      | Parameter                              | Condition | Minimum<br>Value | Typical<br>Value | Maximum<br>Value | Unit |
|-------------|----------------------------------------|-----------|------------------|------------------|------------------|------|
| fLSI(2)     | Frequency                              |           | _                | 40               |                  | kHz  |
| tSU(LSI)(3) | LSI Oscillator<br>Starting Time        |           | _                | 34.3             |                  | us   |
| IDD(LSI)(3) | LSI Oscillator<br>Power<br>Consumption |           |                  | 0.5              |                  | uA   |

 $1 \text{ VDD} = 3.3 \text{V}, \text{TA} = -40 \sim 105 ^{\circ}\text{C}, \text{ unless otherwise specified.}$ 

2 Derived from an overall assessment, not tested in production.

3 Guaranteed by design, not tested in production.

#### 4.1.15 Wake-up Time from Low-Power Modes

The wake-up times listed in the table below are measured during the wake-up phase of an 8MHz HSI RC oscillator. The clock source used upon wake-up depends on the current operating mode:

. Stop or Standby mode: The clock source is the RC oscillator.

. Sleep mode: The clock source is the one used when entering sleep mode.

All times are measured under general working conditions with the given environmental temperature and supply voltage.

| Table 22: Wake-up | o Times | from | Low-Power | Modes |
|-------------------|---------|------|-----------|-------|
|-------------------|---------|------|-----------|-------|

| Symbol      | Parameter                                    | Typical Value | Unit            |
|-------------|----------------------------------------------|---------------|-----------------|
| tWUSLEEP(1) | Wake-up from Sleep mode                      | 10            | CPU clock cycle |
| tWUSTOP(1)  | Wake-up from Stop<br>mode (regulator in low- | 20            | μs              |

|             | power)                    |     |    |
|-------------|---------------------------|-----|----|
| tWUSTDBY(1) | Wake-up from Standby mode | 230 | μs |

1. The wake-up time measurement starts from the wake-up event until the first instruction of the user program is read.

#### **4.1.16 PLL Characteristics**

The parameters listed in the following table are measured under general operating conditions of ambient temperature and power supply voltage.

#### Table 23: PLL Characteristics

|          |                                          |                  | Value            |                     |      |
|----------|------------------------------------------|------------------|------------------|---------------------|------|
| Symbol   | Parameter                                | Minimum<br>Value | Typical<br>Value | Maximum<br>Value(1) | Unit |
|          | PLL Input Clock(2)                       | 1                | 8                | 32                  | MHz  |
| IPLL_IN  | PLL Input Clock Duty Cycle               | 40               |                  | 60                  | %    |
| fPLL_OUT | PLL Frequency Multiplied<br>Output Clock | 4                |                  | 72                  | MHz  |
| tLOCK    | PLL Phase Lock Time                      |                  | 50               | 60                  | us   |

1.Derived from comprehensive evaluation, not tested in production.

2. It's important to use the correct multiplication factor so that the fPLL\_OUT is within the allowable range based on the PLL input clock frequency.

#### 4.1.17 Memory Characteristics

Flash Memory

Unless specified otherwise, all characteristic parameters are obtained at  $TA = -40 \sim 85^{\circ}C$ .

Table 24: Flash Memory Characteristics

| Symbol | Parameter            | Condition | Typical Value |
|--------|----------------------|-----------|---------------|
| tPROG  | 16-bit programming   | _         | 65            |
|        | time                 |           |               |
| tERASE | Page erase time      |           | 10            |
| tME    | Full chip erase time |           | 10            |

| Table 25: Flash Memory Lifetime and Data Retention Perio | d |
|----------------------------------------------------------|---|
|----------------------------------------------------------|---|

| Symbol | Parameter                                    | Condition          | Min<br>Value(1) | Typical<br>Value | Max Value | Unit              |
|--------|----------------------------------------------|--------------------|-----------------|------------------|-----------|-------------------|
| NEND   | Lifespan<br>(Note:<br>Erase/Write<br>Cycles) | TA = -<br>40~105°C | 300             |                  |           | Thousand<br>times |
| tRET   | Data<br>Retention<br>Duration                | TA = 125°C         | 20              |                  |           | Years             |

1.Determined by a comprehensive assessment, not tested during production.

#### 4.1.18 Absolute Maximum Ratings (Electrical Sensitivity)

Electrostatic Discharge (ESD)

Electrostatic discharge (a positive pulse followed by a negative pulse after a one-second interval) is applied to all pins of all samples. The size of the sample is related to the number of power pins on the chip (3 pieces x (n+1) power pins). This test complies with the JEDEC EIA/JESD22-A114 standard.

Table 26: ESD Absolute Maximum Ratings.

| Symbol    | Parameter                                                   | Condition                                                           | Maximum<br>Value(1) | Unit |
|-----------|-------------------------------------------------------------|---------------------------------------------------------------------|---------------------|------|
| VESD(HBM) | Electrostatic<br>Discharge Voltage<br>(Human Body<br>Model) | T A = +25 °C, in<br>accordance with<br>JEDEC<br>EIA/JESD22-<br>A114 | 5000                | V    |

1, Determined through comprehensive evaluation and not tested during production.

#### 4.1.19 I/O Port Characteristics

General Input/Output Characteristics

Unless otherwise specified, the parameters listed in the table below are measured under standard operating conditions. All I/O ports are compatible with CMOS and TTL.

| Table 27: I/O | Static Characteristics |  |
|---------------|------------------------|--|
|               |                        |  |

| Symbol | Parameter                                                    | Condition                                  | Minim<br>um<br>Value | Typica<br>l Value | Maxi<br>mum<br>Value | Unit |
|--------|--------------------------------------------------------------|--------------------------------------------|----------------------|-------------------|----------------------|------|
| VIL    | Input low-level voltage                                      |                                            |                      |                   | 1.5                  |      |
| VILI   | Standard I/O pin, input<br>high-level voltage                |                                            | 1.8                  |                   | _                    | V    |
| VIH    | FT I/O pin, input high-<br>level voltage                     |                                            | 1.8                  |                   | _                    |      |
|        | Standard I/O pin Schmitt trigger voltage hysteresis          |                                            | _                    | 0.3               |                      | V    |
| Vhys   | 5V tolerant I/O pin<br>Schmitt trigger voltage<br>hysteresis | _                                          |                      | 0.3               |                      | V    |
| Ilkg   | Input leakage current                                        | $VSS \le VIN \le VDD$<br>Standard I/O Port |                      |                   | <0.1                 | uA   |

|     |                                         | VIN = 5V,<br>5V Tolerate Port | <br>   | <0.1 |    |
|-----|-----------------------------------------|-------------------------------|--------|------|----|
| RPU | Weak pull-up equivalent resistance      | VIN = VSS                     | <br>37 |      | kΩ |
| RPD | Weak pull-down<br>equivalent resistance | VIN = VDD                     | <br>37 |      | kΩ |

#### Output Voltage

Unless otherwise specified, the parameters listed in the following table are measured under general operating conditions using the ambient temperature and VDD power supply voltage. All I/O ports are compatible with CMOS and TTL.

#### Table 28: Output Voltage Characteristics.

| Symbol | Parameter            | Conditions                                                  | Min | Max | Unit |
|--------|----------------------|-------------------------------------------------------------|-----|-----|------|
| VOL    | Output Low<br>Level  | Standard I/O port, $I_{IO} = -$<br>17mA, VDD=3.3V           |     | 0.4 |      |
| VOH    | Output High<br>Level | Standard I/O port, $I_{IO} = 14$ mA, VDD= $3.3$ V           | 2.9 |     |      |
| VOL    | Output Low<br>Level  | 5V Tolerant port, $I_{IO} = -$<br>17mA, VDD=3.3V            |     | 0.4 |      |
| VOH    | Output High<br>Level | 5V Tolerant port, $I_{IO} = 14$ mA, VDD=3.3V                | 2.9 |     |      |
| VOL    | Output Low<br>Level  | Backup domain I/O port(1),<br>$I_{IO} = -17$ mA, VDD=3.3V   |     | 0.4 |      |
| VOH    | Output High<br>Level | Backup domain I/O port(1),<br>I <sub>I0</sub> =6mA VDD-3.3V | 2.9 |     | V    |

1, The backup domain I/O ports refer to PC13~PC15.

#### 4.1.20 NRST Pin Characteristics

The NRST pin input is driven by CMOS technology, and it is connected to an inseparable pull-up resistor.

Unless otherwise specified, the parameters listed in the table below are measured under general working conditions of ambient temperature and supply voltage.

Table 29: NRST Pin Characteristics

| Symbol       | Parameter                                  | Conditi | Min | Typical | Max | Unit |
|--------------|--------------------------------------------|---------|-----|---------|-----|------|
|              |                                            | on      |     |         |     |      |
| VIL(NRST)(1) | NRST Input Low-Level<br>Voltage            |         | _   | 1.5     |     | V    |
| VIH(NRST)(1) | NRST Input High-Level<br>Voltage           |         |     | 1.8     |     |      |
| Vhys(NRST)   | NRST Schmitt Trigger<br>Voltage Hysteresis |         |     | 300     |     | mV   |

| RPU          | Weak Pull-up Equivalent<br>Resistance | VIN=V<br>SS |    | 37  | <br>kΩ |
|--------------|---------------------------------------|-------------|----|-----|--------|
| VF(NRST)(1)  | NRST Input Filtered<br>Pulse          |             |    | 120 | <br>ns |
| VNF(NRST)(1) | NRST Input Non-filtered<br>Pulse      |             | 25 |     | <br>ns |

1. Guaranteed by design, not tested in production.

#### Recommended Protection for NRST Pin



Figure 13: Recommended Protection for NRST Pin

1. The reset network is designed to prevent parasitic resets.

2. Users must ensure that the voltage on the NRST pin remains below the maximum VIL(NRST) value; otherwise, the MCU will not reset.

#### 4.1.21 12-bit ADC Characteristics

Unless otherwise stated, the parameters in the following table are measured under standard operating conditions of ambient temperature, fPCLK2 frequency, andVDDA supply voltage.

Note: It is recommended to calibrate once each time the power is turned on.

| Symbol | Parameter          | Condition | Minimum<br>Value | Typical<br>Value | Maximu<br>mValue | Unit |
|--------|--------------------|-----------|------------------|------------------|------------------|------|
| VDDA   | Supply Voltage     |           | 1.8              | 3.3              | 3.6              | V    |
| VREF+  | Positive Reference | _         | 2.4              |                  | VDDA             | V    |

Table 30: ADC Characteristics.

|          | Voltage                             |                               |                         |                             |                    |             |
|----------|-------------------------------------|-------------------------------|-------------------------|-----------------------------|--------------------|-------------|
| fADC     | ADC Clock<br>Frequency              |                               | 0.6                     |                             | 14                 | MHz         |
| fS(2)    | Sampling Rate                       |                               | 0.05                    |                             | 1                  | MHz         |
| fTRIG(2) | External Trigger<br>Frequency       | fADC =<br>14MHz               |                         |                             | 823                | kHz         |
| VAIN     | Conversion Voltage<br>Range (3)     |                               | 0                       |                             | VREF+              | V           |
| RAIN(2)  | External Input<br>Impedance         |                               |                         |                             | 50                 | kΩ          |
| RADC(2)  | Sampling Switch<br>Resistance       |                               |                         |                             | 1                  | kΩ          |
|          | Calibration Time                    | fADC =<br>14MHz               |                         | 5.9                         |                    | us          |
| tCAL(2)  |                                     |                               |                         | 83                          |                    | 1/fAD<br>C  |
|          | Trigger Conversion<br>Delay         | fADC =<br>fPCLK/2 =           |                         | us                          |                    |             |
|          |                                     | 14 MHz                        |                         |                             |                    |             |
|          |                                     | fADC = fPCLK/2 5              |                         | 5.5                         | 5.5                |             |
| tlatr(2) |                                     | fADC =<br>fPCLK/4 =<br>12 MHz |                         | 0.219                       |                    | us          |
|          |                                     | fADC =<br>fPCLK/4             |                         | 10.5                        |                    | 1/fPCL<br>K |
|          |                                     | fADC =<br>fHSI14 = 14<br>MHz  | 0.188                   | _                           | 0.259              | us          |
| 45(2)    | Sampling Time                       | fADC =<br>14MHz               | 0.107                   |                             | 17.1               | us          |
| tS(2)    |                                     |                               | 1.5                     |                             | 239.5              | 1/fAD<br>C  |
| tSTAB(2) | Stabilization Time                  |                               | 0                       | 0                           | 1                  | us          |
|          | Total Conversion<br>Time (including | fADC =<br>14MHz               | 1                       |                             | 18                 | us          |
| iCONV(2) | sampling)                           |                               | 14 to 252<br>successive | ( ts+ 12.5 u<br>e approxima | used for<br>ation) | 1/fAD       |

|  |  | С |
|--|--|---|

1. Guaranteed by comprehensive evaluation, not tested during production.

2. Guaranteed by design, not tested during production.

3. Depending on the package, VREF+ can be internally connected to VDDA, and VREF- can be internally connected to VSSA.

4. For external triggering, a delay of 1/fPCLK2 must be added to the listed delays.

Table 31: Maximum RAIN when fADC = 14MHz.

| TS(Cycle) | tS(us) | Maximum<br>RAIN(kΩ) |
|-----------|--------|---------------------|
| 1.5       | 0.11   | 0.4                 |
| 7.5       | 0.54   | 5.9                 |
| 13.5      | 0.96   | 11.4                |
| 28.5      | 2.04   | 25.2                |
| 41.5      | 2.96   | 37.2                |
| 55.5      | 3.96   | 50                  |
| 71.5      | 5.11   | -                   |
| 239.5     | 17.11  | -                   |

1. Guaranteed by design, not tested during production.

#### 4.1.22 Temperature Sensor Characteristics

Table 32: Temperature Sensor Characteristics.

| Symbol          | Parameter              | Min | Typical | Max  | Unit  |
|-----------------|------------------------|-----|---------|------|-------|
| Avg_Slope(1)    | Average Slope          |     | 4.3     | _    | mV/°C |
| V25(1)          | Voltage at 30°C (±5°C) |     | 1.43    | _    | V     |
| tSTART(2)       | Startup Time           |     | _       | 10   | μs    |
| $TS_temp(2)(3)$ | ADC Sample Time when   |     |         | 17.1 | μs    |
|                 | reading temperature    |     |         |      |       |

1. Ensured by comprehensive assessment, not tested in production.

2. Guaranteed by design, not tested in production.

3. The shortest sampling time can be determined by the application through multiple loops.

The temperature is calculated using the following formula:

Temperature (°C) =  $\{(V30 - VSENSE) / Avg_Slope\} + 30$ 

Where V30 = VSENSE value at 30 °C

Avg Slope = Average slope of the temperature vs VSENSE curve (in  $mV/^{\circ}C$ )



Figure 14: Ideal VSENSE vs. Temperature Curve

### 4.1.23 COMP Electrical Characteristics

Table 33: COMP Characteristics

| Symbol | Parameter                                  | Condition                       | Min | Typical | Max  | Unit |
|--------|--------------------------------------------|---------------------------------|-----|---------|------|------|
| VDDA   | Voltage Range                              |                                 | 1.8 |         | 3.6  | V    |
| VIN    | Comparator Input<br>Voltage Range          |                                 | 0   |         | VDDA | V    |
| tSTART | Comparator<br>Starting Time                |                                 |     |         | 60   | us   |
|        | Input 1KHz square wave = $0.1 \sim 0.3$ V, | Ultra-Low-Speed<br>Mode         |     | 0.47    |      |      |
|        | Reference voltage $= 0.2V$                 | Low-Speed Mode                  |     | 0.25    |      | us   |
|        | - 0.2 v                                    | Medium-Speed<br>Mode            |     | 0.14    |      |      |
|        |                                            | High-Speed Mode<br>VDDA >= 2.7V | —   | 47      | _    |      |
| tD     |                                            | High-Speed Mode<br>VDDA < 2.7V  | _   | 45      |      | ns   |
|        | Input 1KHz square                          | Ultra-Low-Speed<br>Mode         | _   | 0.57    |      |      |
|        | wave = $1.1 \sim 1.3$ V,                   | Low-Speed Mode                  |     | 0.29    |      | us   |
|        | = 1.2V                                     | Medium-Speed<br>Mode            |     | 0.15    |      |      |
|        |                                            | High-Speed Mode<br>VDDA >= 2.7V |     | 50      |      | ns   |

|         |                                          | High-Speed Mode<br>VDDA < 2.7V                                                             |   | 44   |        |
|---------|------------------------------------------|--------------------------------------------------------------------------------------------|---|------|--------|
|         | Input 1KHz square wave = $0 \sim 2.4$ V, | Ultra-Low-Speed<br>Mode                                                                    |   | 0.47 |        |
|         | Reference voltage $-2.3V$                | Low-Speed Mode                                                                             |   | 0.25 | <br>us |
|         | - 2.3 v                                  | Medium-Speed<br>Mode                                                                       |   | 0.22 |        |
|         |                                          | High-Speed Mode<br>VDDA >= 2.7V                                                            |   | 96   |        |
|         |                                          | High-Speed Mode<br>VDDA < 2.7V                                                             |   | 93   | <br>ns |
| Voffset | Offset Error                             |                                                                                            |   | +-5  | <br>mV |
|         | Comparator Power<br>Consumption          | Ultra-Low-Speed<br>Mode                                                                    |   | 1.2  |        |
| IDD(COM |                                          | Low-Speed Mode                                                                             |   | 2.4  | <br>   |
| P)      |                                          | Medium-Speed<br>Mode                                                                       | _ | 4.8  | <br>uA |
|         |                                          | High-Speed Mode                                                                            | _ | 19.2 |        |
|         | Comparator<br>Hysteresis                 | No Hysteresis<br>Configuration<br>(COMPxHYST[1:<br>0] = 00)                                |   | 0    |        |
| Vhys    |                                          | Low Hysteresis<br>Configuration and<br>High-Speed Mode<br>(COMPxHYST[1:<br>0] = 01)        |   | 7    |        |
|         |                                          | Low Hysteresis<br>Configuration and<br>Non-High-Speed<br>Mode<br>(COMPxHYST[1:<br>0] = 01) |   | 5    | <br>mV |
|         |                                          | Medium<br>Hysteresis<br>Configuration and<br>High-Speed Mode<br>(COMPxHYST[1:<br>0] = 10)  |   | 15   |        |
|         |                                          | Medium<br>Hysteresis                                                                       |   | 11   |        |

| Configuration and<br>Non-High-Speed<br>Mode<br>(COMPxHYST[1:<br>0] = 10)                    |        |       |
|---------------------------------------------------------------------------------------------|--------|-------|
| High Hysteresis<br>Configuration and<br>High-Speed Mode<br>(COMPxHYST[1:<br>0] = 10)        | <br>32 |       |
| High Hysteresis<br>Configuration and<br>Non-High-Speed<br>Mode<br>(COMPxHYST[1:<br>0] = 10) | <br>24 | <br>1 |

### 4.1.24 OPA Electrical Characteristics

Table 34:OPA Characteristics

| Symbol          | Parameter                                                                                          | Min | Typical | Max   | Unit  |
|-----------------|----------------------------------------------------------------------------------------------------|-----|---------|-------|-------|
| VDDA            | Voltage Range                                                                                      | 1.8 |         | 3.6   | V     |
| CMIR            | Common Mode Input<br>Range                                                                         | 0   |         | VDDA  | V     |
| VIOFFSET        | Input Offset Voltage                                                                               |     | +-2     |       | mV    |
| ΔVIOFFSET       | Input Offset Voltage<br>Coefficient                                                                |     | +-34    |       | uV/°C |
| TRIMOFFSE<br>TP | Input Offset Voltage Step<br>Drive Current                                                         |     | 4.4     | 9.96  | V.    |
| TRIMOFFSE<br>TN |                                                                                                    |     | 4.5     | 10.49 | mv    |
| ILOAD(1)        | Load Capacitance                                                                                   |     |         | 500   | uA    |
| CLOAD(2)        | Common Mode Rejection<br>Ratio                                                                     |     |         | 50    | pF    |
| CMRR            | Power Supply Rejection<br>Ratio                                                                    |     | 60      |       | dB    |
| PSRR            | $CLOAD \le 50 \text{ pf},$ $RLOAD \ge 4 \text{ k}\Omega \text{ DC}$ $V \text{com} = \text{VDDA}/2$ |     | 80      |       | dB    |

| GPW     |                                                                 |          |      |      |      |
|---------|-----------------------------------------------------------------|----------|------|------|------|
| OD W    | Gain Bandwidth Product                                          |          | 17   | 20.2 | MHz  |
| SR      | Input Voltage Conversion<br>Rate (Normal Mode)                  |          | 13.7 | 15.7 | V/uc |
|         | Input Voltage Conversion<br>Rate (High-Speed Mode)              |          | 28.5 | 30.6 | v/us |
| AO      | Open Loop Gain 100mV<br>≤ Output Dynamic Range<br>≤ VDDA -100mV | 65       | 95   |      | dB   |
|         | Open Loop Gain 200mV<br>≤ Output dynamic range ≤<br>VDDA -200mV | 75       | 95   |      |      |
| VOHSAT  | Output High Saturation<br>Voltage                               | VDDA-100 | _    | _    | mV   |
| VOLSAT  | Output Low Saturation<br>Voltage                                |          | _    | 100  | mV   |
| tWAKEUP | Wake-Up Time (Normal<br>Mode)                                   |          | 2.2  | 2.2  |      |
|         | Wake-Up Time (High-<br>Speed Mode)                              |          | 2    | 2    | us   |
|         | Normal Mode                                                     |          | 380  | 407  |      |
|         | High-Speed Mode                                                 |          | 780  | 812  | uA   |

1. Test with a 500uA load at the op-amp output.

2. Test with a 50pF load capacitance at the op-amp output.

# 5 Package Features

# TSSOP20 package



|                      | SYMBOL | MIN   | NOM      | MAX  |
|----------------------|--------|-------|----------|------|
| TOTAL THICKNESS      | A      | -     | -        | 1.20 |
| STAND OFF            | A1     | 0.05  | 0.100    | 0.15 |
| MOLD TOTAL THICKNESS | A2     | 0.90  | 1.00     | 1.05 |
| LEAD WIDTH-1         | b      | 0.20  | -        | 0.28 |
| LEAD WIDTH-2         | b1     | 0.19  | 0.22     | 0.25 |
| LEAD THICKNESS-1     | с      | 0.13  | -        | 0.17 |
| LEAD THICKNESS-2     | c1     | 0.120 | 0.127    | 0.14 |
| MOLD LENGTH          | D      | 6.40  | 6.50     | 6.60 |
| LEAD SPAN            | E      | 6.20  | 6.40     | 6.60 |
| MOLD WIDTH           | E1     | 4.30  | 4.40     | 4.50 |
| LEAD PITCH           | e      | (     | 0.65 BSC |      |
| LEAD LENGTH          | L1     | 0.85  | 1.00     | 1.15 |
| LEAD SOLE LENGTH     | L      | 0.45  | 0.60     | 0.75 |
| LEAD FORM ANGLE      | θ      | 0.    | -        | 8*   |

# LQFP32 Package



Front view

SECTION A-A





|                   | SYMBOL | MIN   | NOM     | MAX   |
|-------------------|--------|-------|---------|-------|
| TOTAL THICKNESS   | А      | -     | -       | 1.60  |
| STAND OFF         | A1     | 0.05  | 0.10    | 0.20  |
| BODY THICKNESS    | A2     | 1.35  | 1.40    | 1.45  |
| UP BODY THICKNESS | A3     |       | 0.64BSC |       |
| THIMBLE DEPTH     | A4     | 0.10  | 0.20    | 0.30  |
| LEAD WIDTH        | b      | 0.32  | 0.375   | 0.43  |
| LEAD WIDTH        | b1     |       | 0.35BSC |       |
| L/F THICKNESS     | С      | 0.127 |         | 0.16  |
| L/F THICKNESS     | c1     | 0.107 | 0.127   | 0.147 |
| TOTAL SIZE X      | D      | 8.80  | 9.00    | 9.20  |
| BODY SIZE X       | D1     | 6.90  | 7.00    | 7.10  |
| TOTAL SIZE Y      | E      | 8.80  | 9.00    | 9.20  |

| BODY SIZE Y      | E1 | 6.90     | 7.00    | 7.10 |  |
|------------------|----|----------|---------|------|--|
| LEAD PITCH       | e  | 0.80BSC  |         |      |  |
| CHAMFER          | h  | 0.20     | 0.30    | 0.40 |  |
| FOOT LENGTH      |    | 0.45     | 0.65    | 0.75 |  |
| LEAD LENGTH      | L1 |          | 1.00BSC |      |  |
| MEASURE POINT    | L2 | 0.25BSC  |         |      |  |
| R RADIUS         | R  | 0.15 REF |         |      |  |
| R1 RADIUS        | R1 | 0.12 REF |         |      |  |
| ANGLE FOR MOLD   | 0  | 12*TYP   |         |      |  |
| ANGLE FOR MOLD   | 01 | 12*TYP   |         |      |  |
| ANGLE FOR LEAD   | 02 | 4° TYP   |         |      |  |
| ANGLE FOR FOOT   | 03 | 0*~ 8*   |         |      |  |
| THIMBLE DIAMETER | 0  | 1.10     | 1.20    | 1.30 |  |

### QFN32 Package



| DIM | MIN.           | NDM.     | MAX. |
|-----|----------------|----------|------|
|     | 0.70           | 0.75     | 0.80 |
| A   | 0.80           | 0.85     | 0.90 |
| A1  | 0              | 0.02     | 0.05 |
| A3  | -              | 0.20 REF | -    |
| b   | 0.15           | 0.20     | 0.25 |
| D   |                | 4.0BSC   |      |
| E   | 4.0BSC         |          |      |
| D2  | 2.60           | 2.70     | 2.80 |
| E2  | 2.60           | 2.70     | 2.80 |
| e   | 0.40BSC        |          |      |
| L   | 0.30 0.35 0.40 |          |      |
| L1  | 0.29           | 0.34     | 0.39 |
| К   | 0.20           | -        | -    |
| ۵۵۵ | 0.10           |          |      |
| bbb | 0.07           |          |      |
| CCC | 0.10           |          |      |
| ddd | 0.05           |          |      |
| eee | 0.08           |          |      |
| fff | 0.10           |          |      |

# LQFP48 Package



| <b></b> 尺寸 | 最小(mm) | 最大(mm) | 尺寸<br>标注 | 最小(mm) | 最大(mm)                    |
|------------|--------|--------|----------|--------|---------------------------|
| А          | 6.90   | 7.10   | C2       | 0.6    | 36TYP                     |
| A1         | 0.2    | ОТҮР   | Н        | 0.05   | 0.15                      |
| A2         | 0.5    | OTYP   | θ        | 12     | 2° TYP4                   |
| A3         | 8.80   | 9.20   | θ1       | 12     | 2° TYP4                   |
| В          | 6.90   | 7.10   | θ2       | 4      | ° TYP                     |
| B1         | 8.80   | 9.20   | θ3       | 0 °    | $^{\circ} \sim 5^{\circ}$ |
| B2         | 0.50   | 0.80   | R        | 0.     | 15TYP                     |
| С          | 1.30   | 1.50   | R1       | 0.     | 12TYP                     |
| C1         | 0.127  | 0.16   |          |        |                           |

\*(标注=mark 尺寸=size 最小=minimum 最大=maximum)

# 6 Ordering Code

|                                            | HL 2 03 | 30A C | СТ | 7 |
|--------------------------------------------|---------|-------|----|---|
| Product Lines                              |         |       |    | Γ |
| HL = 32 bits Micro Controller based on ARM |         |       |    |   |
| Product Lines                              |         |       |    |   |
| 2= Universal Type                          |         |       |    |   |
| Product Sublines                           |         |       |    |   |
| 030A= Basic Typ                            |         |       |    |   |
| Number of pins                             |         |       |    |   |
| F=20pins                                   |         |       |    |   |
| K=32pins                                   |         |       |    |   |
| C=48pins                                   |         |       |    |   |
| Storage Capacity                           |         |       |    |   |
| 8 = 64K Flash + 16K Sram                   |         |       |    |   |
| B = 128K Flash + 32K Sram                  |         |       |    |   |
| C = 256K Flash + 32K Sram                  |         |       |    |   |
| Packaging information                      |         |       |    |   |
| P = TSSOP                                  |         |       |    |   |
| T = LQFP                                   |         |       |    |   |
| $\mathbf{V} = \mathbf{QFN}(\mathbf{4x4})$  |         |       |    |   |
| Temperature                                |         |       |    |   |
| 6 = -40~85°C                               |         |       |    |   |

7 = -40~105°C

### 7 Version History

| Version | Change Information                            |
|---------|-----------------------------------------------|
| V1.0    | Initial version                               |
| V1.1    | Modified feature description and package info |

#### DISCLAIMER

The information in this document is current as of the published date. The information is subject to change without notice. For actual design-in, refer to the latest publications of MEGAHUNT Datasheets, and other official documents, for the most up-to-date specifications of MEGAHUNT products. Not all products and/or types are available in every country. Please contact a MEGAHUNT sales representative for availability and additional information.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of MEGAHUNT. MEGAHUNT assumes no responsibility for any errors or inaccuracies that may appear in this document.

MEGAHUNT disclaims any liability for patent, copyright or other intellectual property rights infringements of third parties by or arising from the use of MEGAHUNT products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of MEGAHUNT or others. Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. MEGAHUNT assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.

The fonts, images, and other logos used by our company are legally authorized or legally used free of charge without infringing any third-party's rights.

Our company reserves the right to modify or revoke this disclaimer.